Finite edge-transitive Cayley graphs and rotary Cayley maps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Edge-transitive Cayley Graphs and Rotary Cayley Maps

This paper aims to develop a theory for studying Cayley graphs, especially for those with a high degree of symmetry. The theory consists of analysing several types of basic Cayley graphs (normal, bi-normal, and corefree), and analysing several operations of Cayley graphs (core quotient, normal quotient, and imprimitive quotient). It provides methods for constructing and characterising various c...

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

product of normal edge-transitive cayley graphs

for two normal edge-transitive cayley graphs on groups h and k which have no common direct factor and gcd(jh=h ′j; jz(k)j) = 1 = gcd(jk=k ′j; jz(h)j), we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

Quotients of Normal Edge-Transitive Cayley Graphs

The symmetry properties of mathematical structures are often important for understanding these structures. Graphs sometimes have a large group of symmetries, especially when they have an algebraic construction such as the Cayley graphs. These graphs are constructed from abstract groups and are vertex-transitive and this is the reason for their symmetric appearance. Some Cayley graphs have even ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2006

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-06-03900-6